您所在的位置:首页 » 上海3D光芯片厂商 客户至上 上海光织科技供应

上海3D光芯片厂商 客户至上 上海光织科技供应

上传时间:2026-01-18 浏览次数:
文章摘要:三维光子互连技术通过电子与光子芯片的垂直堆叠,为MT-FA开辟了全新的应用维度。传统电互连在微米级铜线传输中面临能耗与频宽瓶颈,而三维光子架构将光通信收发器直接集成于芯片堆叠层,利用2304个微米级铜锡键合点构建光子立交桥,实现8

三维光子互连技术通过电子与光子芯片的垂直堆叠,为MT-FA开辟了全新的应用维度。传统电互连在微米级铜线传输中面临能耗与频宽瓶颈,而三维光子架构将光通信收发器直接集成于芯片堆叠层,利用2304个微米级铜锡键合点构建光子立交桥,实现800Gb/s总带宽与5.3Tb/s/mm²的单位面积数据密度。在此架构中,MT-FA作为光信号进出芯片的关键接口,通过定制化端面角度(如8°至42.5°)与模斑转换设计,实现与三维光子层的高效耦合。例如,采用45°端面MT-FA可完成垂直光路耦合,减少光信号在层间传输的损耗;而集成Lens的FA模块则能优化光斑匹配,提升耦合效率。实验数据显示,三维光子互连架构下的MT-FA通道能耗可低至50fJ/bit,较传统方案降低70%,同时通过分布式回损检测技术,可实时监测FA内部微裂纹与光纤微弯,将产品失效率控制在0.3%以下。随着AI算力需求向Zettaflop级迈进,三维光子互连与MT-FA的深度融合将成为突破芯片间通信瓶颈的重要路径,推动光互连技术向更高密度、更低功耗的方向演进。Lightmatter的M1000芯片,通过256根光纤接口突破传统CPO限制。上海3D光芯片厂商

上海3D光芯片厂商,三维光子互连芯片

三维光子集成多芯MT-FA光接口方案是应对AI算力爆发式增长与数据中心超高速互联需求的重要技术突破。该方案通过将三维光子集成技术与多芯MT-FA(多纤终端光纤阵列)深度融合,实现了光子层与电子层在垂直维度的深度耦合。传统二维光子集成受限于芯片面积,难以同时集成高密度光波导与大规模电子电路,而三维集成通过TSV(硅通孔)与铜柱凸点键合技术,将光子芯片与CMOS电子芯片垂直堆叠,形成80通道以上的超密集光子-电子混合系统。以某研究机构展示的80通道三维集成芯片为例,其采用15μm间距的铜柱凸点阵列,通过2304个键合点实现光子层与电子层的低损耗互连,发射器与接收器单元分别集成20个波导总线,每个总线支持4个波长通道,实现了单芯片1.6Tbps的传输容量。这种设计突破了传统光模块中光子与电子分离布局的带宽瓶颈,使电光转换能耗降至120fJ/bit,较早期二维方案降低50%以上。上海3D光芯片厂商三维光子互连芯片的相干光通信技术,提升长距离传输抗干扰能力。

上海3D光芯片厂商,三维光子互连芯片

三维光子互连技术与多芯MT-FA光纤连接的融合,正在重塑芯片级光通信的底层架构。传统电互连因电子迁移导致的信号衰减和热损耗问题,在芯片制程逼近物理极限时愈发突出,而三维光子互连通过垂直堆叠的光波导结构,将光子器件与电子芯片直接集成,形成立体光子立交桥。这种设计不仅突破了二维平面布局的密度瓶颈,更通过微纳加工技术实现光信号在三维空间的高效传输。例如,采用铜锡热压键合工艺的2304个互连点阵列,在15微米间距下实现了114.9兆帕的剪切强度与10飞法的较低电容,确保了光子与电子信号的无损转换。多芯MT-FA光纤连接器作为关键接口,其42.5度端面研磨技术配合低损耗MT插芯,使单根光纤阵列可承载800Gbps的并行传输,通道均匀性误差控制在±0.5微米以内。这种设计在数据中心场景中展现出明显优势:当处理AI大模型训练产生的海量数据时,三维光子互连架构可将芯片间通信带宽提升至5.3Tbps/mm²,单比特能耗降低至50飞焦,较传统铜互连方案能效提升80%以上。

某团队采用低温共烧陶瓷(LTCC)作为中间层,通过弹性模量梯度设计缓解热应力,使80通道三维芯片在-40℃至85℃温度范围内保持稳定耦合。其三,低功耗光电转换。针对接收端功耗过高的问题,某方案采用垂直p-n结锗光电二极管,通过优化耗尽区与光学模式的重叠,将响应度提升至1A/W,同时电容降低至17fF,使10Gb/s信号接收时的能耗降至70fJ/bit。这些技术突破使得三维多芯MT-FA方案在800G/1.6T光模块中展现出明显优势:相较于传统可插拔光模块,其功耗降低60%,空间占用减少50%,且支持CPO(光电共封装)架构下的光引擎与ASIC芯片直接互连,为AI训练集群的规模化部署提供了高效、低成本的解决方案。利‌三维光子互连芯片‌,‌研究人员成功实现了超高速光信号传输,‌为下一代通信网络带来了进步。

上海3D光芯片厂商,三维光子互连芯片

三维光子集成技术为多芯MT-FA光收发组件的性能突破提供了关键路径。传统二维平面集成受限于光子与电子元件的横向排列密度,导致通道数量和能效难以兼顾。而三维集成通过垂直堆叠光子芯片与CMOS电子芯片,结合铜柱凸点高密度键合工艺,实现了80个光子通道在0.15mm²面积内的密集集成。这种结构使发射器单元的电光转换能耗降至50fJ/bit,接收器单元的光电转换能耗只70fJ/bit,较早期二维系统降低超80%。多芯MT-FA组件作为三维集成中的重要光学接口,其42.5°精密研磨端面与低损耗MT插芯的组合,确保了多路光信号在垂直方向上的高效耦合。通过将透镜阵列直接贴合于FA端面,光信号可精确汇聚至光电探测器阵列,既简化了封装流程,又将耦合损耗控制在0.2dB以下。实验数据显示,采用三维集成的800G光模块在持续运行中,MT-FA组件的通道均匀性波动小于0.1dB,满足了AI算力集群对长期稳定传输的严苛要求。研究发现,三维光子互连芯片在高频信号传输方面较传统芯片更具优势。上海3D PIC价格

海洋探测设备中,三维光子互连芯片以高耐腐蚀性适应水下复杂工作环境。上海3D光芯片厂商

从工艺实现层面看,多芯MT-FA的制造涉及超精密加工、光学镀膜、材料科学等多学科交叉技术。其重要工艺包括:采用五轴联动金刚石车床对光纤阵列端面进行42.5°非球面研磨,表面粗糙度需控制在Ra<5nm;通过紫外固化胶水实现光纤与V槽的亚微米级定位,胶水收缩率需低于0.1%以避免应力导致的偏移;端面镀制AR/HR增透膜,使1550nm波段反射率低于0.1%。在可靠性测试中,该连接器需通过85℃/85%RH高温高湿试验、500次插拔循环测试以及-40℃至85℃温度冲击试验,确保在数据中心24小时不间断运行场景下的稳定性。值得注意的是,多芯MT-FA的模块化设计使其可兼容QSFP-DD、OSFP等主流光模块接口标准,通过标准化插芯实现即插即用。随着硅光集成技术的演进,未来多芯MT-FA将向更高密度发展,例如采用空芯光纤技术可将通道数扩展至72芯,同时通过3D打印技术实现定制化端面结构,进一步降低光子芯片的封装复杂度。这种技术迭代不仅推动了光通信向1.6T及以上速率迈进,更为光子计算、量子通信等前沿领域提供了关键的基础设施支撑。上海3D光芯片厂商

上海光织科技有限公司
联系人:吴先生
咨询电话:21-52960710
咨询手机:18019347860
咨询邮箱:wu.jinhua@optoweave.com
公司地址:上海市闵行区剑川路951号5幢1层(集中登记地)

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。

图片新闻

  • 暂无信息!