在超算中心高速数据传输的重要架构中,多芯MT-FA光组件已成为支撑AI算力与大规模科学计算的关键技术载体。其通过精密研磨工艺将光纤阵列端面加工为特定角度的反射镜,结合低损耗MT插芯实现多路光信号的并行耦合传输。以800G/1.6T光模块为例,该组件可在单模块内集成12至24芯光纤,通道均匀性误差控制在±0.5μm以内,确保每个通道的插入损耗低于0.35dB、回波损耗超过60dB。这种技术特性使其在超算集群的板间互联场景中表现突出:当处理AI大模型训练产生的PB级数据时,多芯MT-FA组件可通过并行传输将单节点数据吞吐量提升至传统方案的3倍以上,同时将光链路时延压缩至纳秒级。在超算中心的实际部署中,该组件已普遍应用于CPO/LPO架构的硅光模块内部连接,通过高密度封装技术将光引擎与电芯片的间距缩短至毫米级,明显降低信号衰减与功耗。其支持的多模光纤与保偏光纤混合传输方案,更可满足超算中心对不同波长(850nm/1310nm/1550nm)光信号的兼容需求,为HPC集群的异构计算提供稳定的光传输基础。多芯MT-FA光组件的通道隔离度优化,使串扰抑制比达到45dB以上。上海多芯MT-FA光组件在5G中的应用

在存储设备领域,多芯MT-FA光组件正成为推动数据传输效率跃升的重要器件。随着全闪存阵列和分布式存储系统向更高带宽演进,传统电接口已难以满足海量数据吞吐需求,而多芯MT-FA通过精密研磨工艺与阵列排布技术,实现了12芯至24芯光纤的高密度集成。其重要优势在于将多路光信号并行传输能力与存储设备的I/O接口深度融合,例如在400G/800G存储网络中,MT-FA组件可通过42.5°端面全反射设计,将光信号损耗控制在≤0.35dB范围内,同时支持PC/APC两种研磨工艺以适配不同偏振需求。这种特性使得存储设备在处理AI训练集群产生的高并发数据流时,既能保持纳秒级时延,又能通过多通道均匀性设计确保数据完整性。实际应用中,MT-FA组件已渗透至存储设备的多个关键环节:在光模块内部,其紧凑型设计可节省30%以上的PCB空间,使8通道光引擎模块体积缩小至传统方案的1/2;在背板互联场景,通过V槽基片将光纤间距精度控制在±0.5μm以内,有效解决了高速信号串扰问题;在相干存储网络中,保偏型MT-FA组件可将偏振消光比提升至≥25dB,满足长距离传输的稳定性要求。上海多芯MT-FA光组件在5G中的应用针对医疗内窥镜系统,多芯MT-FA光组件实现图像传感器与光纤束的高效对接。

在AI算力基础设施加速迭代的背景下,多芯MT-FA光组件凭借其高密度并行传输能力,成为支撑超高速光模块的重要器件。随着800G/1.6T光模块在数据中心的大规模部署,AI训练与推理对数据吞吐量的需求呈现指数级增长。传统单通道传输模式已难以满足每秒TB级数据交互的严苛要求,而多芯MT-FA通过将8至24芯光纤集成于微型插芯,配合42.5°端面全反射研磨工艺,实现了多路光信号的同步耦合与零串扰传输。其单模版本插入损耗≤0.35dB、回波损耗≥60dB的指标,确保了光信号在长距离传输中的完整性,尤其适用于AI集群中GPU服务器与交换机之间的背板互联场景。以1.6T光模块为例,采用12芯MT-FA组件可将传统16条单模光纤的连接需求压缩至1个接口,空间占用减少75%的同时,使端口密度提升至每U机架48Tbps,为高密度计算节点提供了物理层支撑。
多芯MT-FA光组件的技术突破正重塑存储设备的架构设计范式。传统存储系统采用分离式光模块与电背板组合方案,导致信号转换损耗占整体延迟的40%以上,而MT-FA通过将光纤阵列直接集成至ASIC芯片封装层,实现了光信号与电信号的零距离转换。这种共封装光学(CPO)架构使存储设备的端口密度提升3倍,单槽位带宽突破1.6Tbps,同时将功耗降低至每Gbps0.5W以下。在可靠性方面,MT-FA组件通过200次以上插拔测试和-25℃至+70℃宽温工作验证,确保了存储集群在7×24小时运行中的稳定性。特别在全闪存存储阵列中,MT-FA支持的多模光纤方案可将400G接口成本降低35%,而单模方案则通过模场转换技术将耦合损耗压缩至0.1dB以内,使长距离存储互联的误码率降至10^-15量级。随着存储设备向1.6T时代演进,MT-FA组件正在突破传统硅光集成限制,通过与薄膜铌酸锂调制器的混合集成,实现了光信号调制效率与能耗比的双重优化。这种技术演进不仅推动了存储设备从带宽竞争向能效竞争的转型,更为超大规模数据中心构建低熵存储网络提供了关键基础设施。在光模块老化测试中,多芯MT-FA光组件的MTBF超过50万小时。

在高性能计算(HPC)领域,多芯MT-FA光组件凭借其高密度并行传输特性,已成为突破算力集群带宽瓶颈的重要器件。以12芯MT-FA为例,其通过阵列排布技术将12根光纤集成于微型插芯中,配合42.5°端面全反射研磨工艺,可在单模块内实现12路光信号的同步传输。这种设计使光模块接口密度较传统方案提升3倍以上,明显优化了HPC系统中服务器与交换机间的互联效率。实验数据显示,采用多芯MT-FA的400GQSFP-DD光模块,在2km传输距离下可实现低于0.35dB的插入损耗,回波损耗超过60dB,满足HPC场景对信号完整性的严苛要求。其低损耗特性源于高精度V槽加工工艺,V槽pitch公差控制在±0.5μm以内,确保多芯光纤排列的几何精度,从而降低耦合过程中的光功率损耗。边缘计算节点部署中,多芯 MT-FA 光组件实现短距离高速数据传输。上海多芯MT-FA光组件耦合技术
虚拟现实内容传输领域,多芯 MT-FA 光组件保障沉浸式体验的流畅性。上海多芯MT-FA光组件在5G中的应用
多芯MT-FA的并行传输能力与广域网拓扑结构高度适配,有效解决了传统方案中的效率痛点。在环形广域网架构中,MT-FA通过42.5°全反射端面设计,将垂直入射光信号转向90°后耦合至光探测器阵列,消除传统透镜耦合的像差问题,使耦合效率提升至92%以上。这种设计特别适用于跨城域光传输系统,例如在1000公里级链路中,采用MT-FA的800G光模块可将中继器间距从80公里延长至120公里,降低30%的基建成本。此外,MT-FA支持多协议兼容特性,可同时处理以太网、光纤通道及Infiniband信号,满足金融交易、科研数据同步等低时延场景需求。在广域网升级过程中,MT-FA的模块化设计允许运营商通过更换前端组件实现从400G到1.6T的平滑演进,避免全系统替换的高昂成本。其耐温范围覆盖-40℃至85℃,适应沙漠、极地等极端环境,保障全球网络节点的稳定运行。上海多芯MT-FA光组件在5G中的应用
上海光织科技有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。